Declaration of conformity for products with Model EPDs

The European Federation of Concrete Admixtures Associations (EFCA) has developed Model Environmental Product Declarations (ModeIEPD) for six categories of admixtures. These model EPDs have been verified as being in compliance with EN 15804 and ISO 14025 and published by the independent Institute for Construction and Environment in Germany (IBU). The Model EPD are also available for download from the EFCA website.

Sika Sweden AB is a member of SACA (Swedish Association for Concrete Admixtures) which is a national association member of EFCA. This gives the company the right to declare that a specific EFCA Model EPD applies to the named products listed below, by using an IBUapproved guideline procedure, to confirm that any particular product is within the scope of a specific product category Model EPD. This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for sustainability assessment of the construction products and construction projects, in which they are used.

EFCA Model EPD: Air entrainers, Ref EPD-EFC-20210193-IBG1-EN
Product Trade Name:

Sika ${ }^{\circledR}$ AirPRO (SE) 5\%
Sika ${ }^{\circledR}$ AirPRO (SE) 10\%
Sika ${ }^{\circledR}$ AirPRO (SE) 20\%
Sika ${ }^{\circledR}$ AirPRO (SE) conc

SikaAer-S 10\%
SikaAer-S 20\%
SikaAer-S Concentrate

Sika Sweden AB

Erik Mild
Product Manager Concrete

Stockholm, March 2022

ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration

Programme holder
Publisher
Declaration number
Issue date
Valid to

European Federation of Concrete Admixtures Associations a.i.s.b.l. (EFCA)
Institut Bauen und Umwelt e.V. (IBU)
Institut Bauen und Umwelt e.V. (IBU)
EPD-EFC-20210193-IBG1-EN
16.12.2021
15.12.2026

Concrete admixtures - Air entrainers
European Federation of Concrete
Admixtures Associations a.i.s.b.b.l. (EFCA)

General Information

European Federation of Concrete Admixtures Associations a.i.s.b.I. (EFTA)

Programme holder

IBU - Institut Bauen ind Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
 EPD-EFC-20210193-IBG1-EN

This declaration is based on the product category rules:

Concrete admixtures, 11.2017
(PCR checked and approved by the SVR)

Issue date

16.12.2021

Valid to

15.12.2026

Dipl. Ing. Hans Peters
 (chairman of Institut Bauen und Umwelt e.V.)

Dr. Alexander Röder
(Managing Director Institut Bauen ind Umwelt e.V.))

Concrete admixtures - air entrainers

Owner of the declaration

European Federation of Concrete Admixtures
Associations a.i.s.b.l. (EFCA)
Rue d'Arlon 55 BE-1040 Brussels, Belgium

Declared product / declared unit

1 kg of air entrainer, density: $1-1.6 \mathrm{~kg} / \mathrm{l}$

Scope:

This verified EPD entitles EFCA to bear the symbol of the Institut Bauen ind Umwelt e.V. It exclusively applies for the product groups referred to for plants operated in Belgium, Finland, France, Germany, Italy, Netherlands, Norway, Poland, Spain, Sweden, Switzerland, Turkey and the United Kingdom by companies that are members of EFCA National Associations in these countries and for a period of five years from the date of issue. It involves a Model EPD where the product displaying the highest environmental impact in a group was selected for calculating the Life Cycle Assessment. Please refer to the EFCA website www.efca.info for a list of National Associations.
The application of this EPD is only possible for member companies of EFCA's member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.
The EPD was created according to the specifications of $E N$ 15804+A2. In the following, the standard will be simplified as EN 15804.

Verification

The standard EN 15804 serves as the core PCR
Independent verification of the declaration and data according to ISO 14025:2010

$$
\square \text { internally } \quad \text { X externally }
$$

Matthias Schulz
(Independent verifier)

Product

2.1 Information about the enterprise

EFCA (European Federation of Concrete Admixtures Associations) was formed in 1984 as a partnership between national admixture associations in order to promote the interests of the industry at European level For more information (such as membershiplist) see: www.efca.info

2.2 Product description/Product definition

Admixtures are liquid or powdery agents that are introduced in small amounts (< 5% by mass of the
cement content) to concrete while it is being mixed and that enhance the properties of the fresh and/or hardened concrete.
Air entrainers are admixtures that generate during the mixing process a defined quantity of small, uniformly distributed air voids that remain in the concrete after hardening.
The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).

The product needs a declaration of performance taking into consideration EN 934-2:2009+A1:2012, Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures - Definitions, requirements, conformity, marking and labelling and the CE-marking. For the application and use the respective national provisions apply.

2.3 Application

Concrete admixtures are used as constituent materials for the production of concrete, mortar and grout (unreinforced concrete, reinforced and prestressed concrete, site-mixed and ready-mixed concrete, precast concrete). Their application should be in line with the manufacturer's technical documents and Declaration of Performance.

2.4 Technical Data

Air entrainers must comply with the general requirements of $E N 934-1$ and the additional requirements of $E N$ 934-2.
The corresponding requirements in line with EN 934-1 and EN 934-2 must be maintained.

Constructional data

Name	Value	Unit
Density /ISO 758/	1-1.6	g / ml
Solids content /EN 480-8/	1	M.-\%
pH value /ISO 4316/	-1	$-\log _{10}\left(a_{H+}\right)$
Chloride content /EN 480-10/	Maximum value to be declared by the manufactur er	M.-\%
Alkali content /EN 480-12/	Maximum value to be declared by the manufactur er	М.-\%
Corrosion behavior /EN 934-1/, IEN 480-14/	${ }^{2}$	$\mu \mathrm{A} / \mathrm{cm}^{2}$
SiO2 content /EN 192-2/	$-^{3}$	M.-\%
$\begin{aligned} & \text { Air content of fresh concrete /EN } \\ & 12350-7 / \end{aligned}$	Test mix \geq 2.5% by volume above control mix. Total air content 4% to 6% by volume	Vol.-\%
Compressive strength /EN 123903/	At 28 days: test mix \geq 75\% of control mix	$\mathrm{N} / \mathrm{mm}^{2}$
Water reduction /EN 12350-2/, /EN 12350-5/ Plasticizer	-4	mm
Increasing / maintaining of consistence /EN 12350-2/, /EN 12350-5/ Superplasticizer	-4	mm
Setting time /EN 480-2/ Accelerator/Retarder	-4	min
Air void Characteristics in hardened concrete /EN 480-11/ Air entrainer	Spacing factor in the test mix ≤ 0.2 mm	mm
Capillary water absorption /EN	- ${ }^{4}$	$\mathrm{g} / \mathrm{mm}^{2}$

480-5/ Densifier
${ }^{1}$ Value will be made available to user on request
${ }^{2}$ No corrosion behaviour test is required for admixtures which only contain active substances in the list of approved substances to EN 934-1, Annexe A. 1 and in the list of declared substances to EN 934-1, Annexe A. 2 .
${ }^{3}$ Maximum value must only be indicated when SiO 2 percentage by mass > 5%
${ }^{4}$ Details not relevant for this type of admixture

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to EN 934-2, Admixtures for concrete, mortar and grout - Part 2 : Concrete admixtures - Definitions, requirements, conformity, marking and labelling.

2.5 Delivery status

Air entrainers are usually supplied in liquid, paste or powder form in containers made of steel or plastic. Typical container sizes are canisters containing approx. 25 kg , drums with approx. 200 kg or Intermediate Bulk Containers (IBC) with 1000 kg . The containers are shipped on wooden pallets. For larger applications, loose deliveries in tank trucks with a capacity in excess of 1 tonne are also used.

2.6 Base materials/Ancillary materials

Air entrainers contain surface-active substances, referred to as tensides. Soaps from natural resins or synthetic nonionic and ionic tensides (e.g. alkyl polyglycol ether, alkyl sulphates and alkyl sulphonates) as well as preservatives are added as minor components and auxiliaries.
The active substance level of air entrainers usually used in Europe lies between 0.5 and 5% by mass (concentrates up to 20% by mass) for doses of 0.05 to 1.0% by mass in relation to the cement weight. The products covered by this EPD typically contain the following proportions by mass of constituent materials and auxiliaries referred to:

Tensides*:
Natural resins*:
Fatty acids*:
Additives:
Water:
*Solid content
These volumes are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases.
Note: For companies to declare their products within the scope of this EPD it is not sufficient to simply comply with the product composition shown above. The application of this EPD is only possible for member companies of EFCA's member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document.

Concrete admixtures - Air entrainers are mixtures under the chemical legislation (REACH and classification, labelling and packaging CLP).

1. substances from the "Candidate List of Substances of Very High Concern for Authorisation"

(SVHC)

If this product contains substances listed in the candidate list (latest version) exceeding 0.1 percentage by mass, the relevant information can be found in the safety data sheet of the relevant product covered by this model EPD
If the construction product (concrete admixture - air entrainer) contains SVHC exceeding 0.1 percentage by mass, the respective SVHC, its CAS number, information on the concentration and / or concentration range together with information on their hazardous properties are listed in the safety data sheet of the respective product.

2. CMR substances in categories $1 A$ and $1 B$

If this product contains other carcinogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on the candidate list, exceeding 0.1 percentage by mass, the relevant information can be found in the safety data sheet of the relevant product covered by this model EPD.

If the construction product (concrete admixture - air entrainer) contains CMR substances in categories 1A or 1 B exceeding 0.1 percentage by mass, the respective CMR substances, information on the concentration and/or concentration range together with information on their hazardous properties are listed in the safety data sheet of the respective product.

3. Biocide products added to the construction product

Biocide products were added to this construction product, or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) Ordinance on Biocide Products No. 528/2012)

Usually the construction product (concrete admixture air entrainer) contain small amounts (<0.5 \% by mass) of biocides of the product type "in-can preservatives".

The information which active substances are contained in the product can be found in the safety data sheet of the relevant product covered by this model EPD.

If the construction product (concrete admixture - air entrainer) contains biocide products, the active substances, information on the concentration and/or concentration range, the product type together with information on their hazardous properties are listed in the safety data sheet of the respective product.

2.7 Manufacture

Concrete admixtures are usually manufactured by mixing ingredients (together) in batch mode and filling containers for dispatch. The process follows quality standards outlined in EN 934-6.

2.8 Environment and health during manufacturing

As a general rule, no environmental or health protection measures other than those specified by law are necessary.

2.9 Product processing/Installation

During concrete manufacture, concrete admixtures are usually added along with the mixing water or included in premixed concrete.
Health and safety measures (eye protection, hand protection, possibly respiratory equipment and body protection) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site.

2.10 Packaging

Reusable containers are, where practicable taken back by the manufacturer and redirected into the production circuit. Empty plastic or steel containers which can no longer be used are recyclable.
Wooden reusable pallets are, where practicable taken back by the manufacturer or building material trader who returns them to the building product manufacturer redirecting them into the production process.

2.11 Condition of use

During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. Concrete admixtures make an essential contribution towards optimizing the physical and chemical properties of concrete enhancing its performance, durability, economic value and sustainability

2.12 Environment and health during use

During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. No relevant risks are known for water, air and soil if the products are used as designated.

2.13 Reference service life

Not relevant as this declaration relates to a preliminary product.

2.14 Extraordinary effects

Fire

Not relevant as this declaration relates to a preliminary product.

Fire protection

Not relevant as this declaration relates to a preliminary product .

Water

Not relevant as this declaration relates to a preliminary product.

Mechanical destruction

Not relevant as this declaration relates to a preliminary product

2.15 Re-use phase

Not relevant as this declaration relates to a preliminary product.

2.16 Disposal

Empty, dried containers are directed to the recycling process where practicable.
Packaging residue must be directed to proper waste disposal taking local guidelines into consideration. Admixture residues, during the installation phase into the building, are directed to landfill. Admixture applied into the building and dismantled at the end of the
product service life cannot be separated anymore from concrete. For this reason, this admixture is sent directly to landfill along with concrete. The European Waste Code (EWC) applicable for the declared product can be assimilated to the concrete EWC 170101.

2.17 Further information

More information is available in the manufacturers' product or safety data sheets on the manufacturers' Web sites or on request.
An electronic version of this declaration is available at www.efca.info and www.ibu-epd.com

3. LCA: Calculation rules

3.1 Declared Unit

This EPD refers to the declared unit of 1 kg concrete admixture applied into the building with a density of 1$1.6 \mathrm{~kg} / \mathrm{I}$ in accordance with the $I B U P C R 11.2017$ Part B for concrete admixtures. The maximum dosage of air entrainers is 1% by mass related to the cement content in the concrete.
The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).
Depending on the application, a corresponding conversion factor such as the density to convert volumetric use to mass must be taken into consideration.

The Declaration type is according to EN 15804: Cradle to gate with options, modules C1-C4, and module D

Declared unit

Name	Value	Unit
Declared unit	1	kg
Gross density	$1000-$	$\mathrm{kg} / \mathrm{m}^{3}$
Conversion factor to 1 kg	1600	-

3.2 System boundary

Modules A1, A2 and A3 are taken into consideration in the LCA:

- A1 Production of preliminary products
- A2 Transport to the plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables and waste treatment
-A5 Installation, admixtures applied into the building during A5 phase operations and packaging disposal.
Packaging disposal considered is described below:
-Incineration, for materials like plastic and wood.
-Landfill, for inert material like metals (where used).
-C1-C2-C4-D
The building deconstruction (demolition process) takes place in C1 module which considers energy production and consumption in terms of diesel and all the emissions connected with the fuel-burning process. After the demolition, admixture is transported to the end-of-life processing (C2 module) where all the impacts related to the transport processes are considered. For precautionary principle and as worstcase scenario, disposal is the only end-of-life scenario considered. This is modelled by landfill process (module C4) where admixtures end their life cycle. Module D accounts for benefits that are beyond the defined system boundaries. Credits are generated
during the incineration of wastes in module A5, which are declared in module D.

3.3 Estimates and assumptions

For this EPD formulation and production data defined by EFCA were considered. Production waste was assumed to be disposed of to landfill without credits as a worst case.
An average of steel and plastic containers, and wooden pallets was considered in the LCA.

3.4 Cut-off criteria

All raw materials submitted for the formulations and production data were taken into consideration
The manufacture of machinery, plant and other infrastructure required for production of the products under review was not taken into consideration in the LCA.
Transport of packaging materials is excluded.

3.5 Background data

Data from the GaBi database SP40 (2020) was used as background data.

3.6 Data quality

Representative products were applied for this EPD and the product in the group displaying the highest environmental impact was selected for calculating the LCA results. The background data sets used are no more than 4 years old.
Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product.
The data quality of the background data is considered to be good.

3.7 Period under review

Representative formulations are valid for 2019 under consideration of data from 2011.

3.8 Allocation

Mass allocation have been applied when primary data have been used and implemented into the LCA model.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account

The GaBi database SP40 (2020) has been used

4. LCA: Scenarios and additional technical information

Characteristic product properties

Information on biogenic Carbon

The packaging material contains biogenic carbon content which has been presented below.

Information on describing the biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic Carbon Content in product	0	kg C
Biogenic Carbon Content in accompanying packaging	0.00387	kg C

Modules A1-A3, A5, C1, C2, C4 and D are declared.

Assembly (A5)

Name	Value	Unit
Other resources for packaging material	0.04228	kg
Material loss	0.01	kg

Material loss regards the amount of admixture not used during the application phase into the building. This amount is 1% of the admixture, impacts related to the production of this admixture part are charged to A5 module. This admixture percentage is considered as waste to disposal and impacts of its end of life have been considered into the LCA model and declared in A5.
End of life (C1-C4)

Name	Value	Unit
Collected as mixed construction waste	1	kg
Landfilling	1	kg

5. LCA: Results

Disclaimer:
EP-freshwater: This indicator has been calculated as "kg P eq" as required in the characterization model
(EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe;
http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml)
DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

PROD	UCT	AGE	$\begin{array}{\|l\|} \hline \text { CONST } \\ \text { ON PR } \\ \text { STA } \end{array}$	RUCTI	USE STAGE							END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
					$\stackrel{\otimes}{\Omega}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\circ}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{\circ} \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { on } \\ & \text { N} \\ & \stackrel{\Gamma}{V} \end{aligned}$		$\begin{aligned} & \overline{\mathbb{N}} \\ & 0.0 \\ & 0.0 \\ & 0 . \end{aligned}$	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	ND	X	ND	ND	MNR	MNR	MNR	ND	ND	X	X	ND	X	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 kg air entrainer

Core Indicator	Unit	A1-A3	A5	C1	C2	C4	D
Global warming potential - total	[$\mathrm{kg} \mathrm{CO}_{2}$-Eq.]	4.39E-1	$1.21 \mathrm{E}-1$	$2.79 \mathrm{E}-4$	1.24E-2	$1.53 \mathrm{E}-2$	-5.53E-2
Global warming potential - fossil fuels	[$\mathrm{kg} \mathrm{CO}_{2}$-Eq.]	$4.86 \mathrm{E}-1$	$1.02 \mathrm{E}-1$	$2.66 \mathrm{E}-4$	1.18E-2	1.52E-2	-5.51E-2
Global warming potential - biogenic	[$\mathrm{kg} \mathrm{CO}_{2}$-Eq.]	-8.48E-2	$1.89 \mathrm{E}-2$	1.24E-5	5.42E-4	4.80E-5	-1.30E-4
GWP from land use and land use change	[$\mathrm{kg} \mathrm{CO}_{2}$-Eq.]	3.89E-2	3.90E-4	6.39E-9	2.79E-7	4.37E-5	-3.89E-5
Depletion potential of the stratospheric ozone layer	[kg CFC11-Eq.]	6.74E-9	$6.74 \mathrm{E}-11$	2.84E-20	$1.24 \mathrm{E}-18$	5.62E-17	-5.80E-16
Acidification potential, accumulated exceedance	[mol H${ }^{+}$-Eq.]	$1.83 \mathrm{E}-3$	3.21E-5	3.60E-6	3.73E-5	$1.09 \mathrm{E}-4$	-7.75E-5
Eutrophication, fraction of nutrients reaching freshwater end compartment	[kg PO 4 -Eq.]	4.73E-6	4.88E-8	5.75E-11	2.51E-9	2.61E-8	-7.16E-8
Eutrophication, fraction of nutrients reaching marine end compartment	[kg N-Eq.]	2.91E-4	6.18E-6	1.63E-6	1.72E-5	2.80E-5	-2.00E-5
Eutrophication, accumulated exceedance	[mol N-Eq.]	4.59E-3	1.08E-4	1.79E-5	1.89E-4	3.08E-4	-2.14E-4
Formation potential of tropospheric ozone photochemical oxidants	[kg NMVOC-Eq.]	$1.06 \mathrm{E}-3$	2.01E-5	4.91E-6	3.39E-5	8.48E-5	-5.75E-5
Abiotic depletion potential for non-fossil resources	[kg Sb-Eq.]	6.14E-7	6.31E-9	$8.06 \mathrm{E}-12$	3.52E-10	$1.36 \mathrm{E}-9$	-9.10E-9
Abiotic depletion potential for fossil resources	[MJ]	$1.21 \mathrm{E}+1$	1.40E-1	3.81E-3	1.66E-1	$1.99 \mathrm{E}-1$	-9.35E-1
Water (user) deprivation potential, deprivation-weighted water consumption (WDP)	[m^{3} world-Eq deprived]	1.48E-1	$1.25 \mathrm{E}-2$	$5.27 \mathrm{E}-7$	2.30E-5	$1.59 \mathrm{E}-3$	-5.76E-3

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 kg air entrainer

Indicator	Unit	A1-A3	A5	$\mathbf{C 1}$	C2	C4	D
Renewable primary energy as energy carrier	$[\mathrm{MJ}]$	$1.43 \mathrm{E}+0$	$1.61 \mathrm{E}-1$	$1.20 \mathrm{E}-5$	$5.25 \mathrm{E}-4$	$2.61 \mathrm{E}-2$	$-2.06 \mathrm{E}-1$
Renewable primary energy resources as material utilization	$[\mathrm{MJ}]$	$1.42 \mathrm{E}-1$	$-1.42 \mathrm{E}-1$	ND	ND	ND	ND
Total use of renewable primary energy resources	$[\mathrm{MJ}]$	$1.58 \mathrm{E}+0$	$1.91 \mathrm{E}-2$	$1.20 \mathrm{E}-5$	$5.25 \mathrm{E}-4$	$2.61 \mathrm{E}-2$	$-2.06 \mathrm{E}-1$
Non-renewable primary energy as energy carrier	$[\mathrm{MJ}]$	$1.08 \mathrm{E}+1$	$1.46 \mathrm{E}+0$	$3.81 \mathrm{E}-3$	$1.67 \mathrm{E}-1$	$1.99 \mathrm{E}-1$	$-9.35 \mathrm{E}-1$
Non-renewable primary energy as material utilization	$[\mathrm{MJ}]$	$1.32 \mathrm{E}+0$	$-1.32 \mathrm{E}+0$	ND	ND	ND	ND
Total use of non-renewable primary energy resources	$[\mathrm{MJ}]$	$1.22 \mathrm{E}+1$	$1.40 \mathrm{E}-1$	$3.81 \mathrm{E}-3$	$1.67 \mathrm{E}-1$	$1.99 \mathrm{E}-1$	$-9.35 \mathrm{E}-1$
Use of secondary material	$[\mathrm{kg}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Use of renewable secondary fuels	$[\mathrm{MJ}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Use of non-renewable secondary fuels	$[\mathrm{MJ}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Use of net fresh water	$\left[\mathrm{m}^{3}\right]$	$3.75 \mathrm{E}-3$	$2.96 \mathrm{E}-4$	$2.16 \mathrm{E}-8$	$9.41 \mathrm{E}-7$	$5.02 \mathrm{E}-5$	$-2.38 \mathrm{E}-4$

RESULTS OF THE LCA - WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2:
1 kg air entrainer

Indicator	Unit	A1-A3	A5	C1	C2	C4	D
Hazardous waste disposed	$[\mathrm{kg}]$	$1.45 \mathrm{E}-4$	$1.45 \mathrm{E}-6$	$3.70 \mathrm{E}-13$	$1.62 \mathrm{E}-11$	$3.03 \mathrm{E}-9$	$-3.73 \mathrm{E}-10$
Non-hazardous waste disposed	$[\mathrm{kg}]$	$2.00 \mathrm{E}-2$	$1.15 \mathrm{E}-2$	$3.90 \mathrm{E}-7$	$1.70 \mathrm{E}-5$	$1.00 \mathrm{E}+0$	$-4.34 \mathrm{E}-4$
Radioactive waste disposed	$[\mathrm{kg}]$	$2.96 \mathrm{E}-4$	$3.93 \mathrm{E}-6$	$4.09 \mathrm{E}-9$	$1.79 \mathrm{E}-7$	$2.27 \mathrm{E}-6$	$-7.03 \mathrm{E}-5$
Components for re-use	$[\mathrm{kg}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Materials for recycling	$[\mathrm{kg}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Materials for energy recovery	$[\mathrm{kg}]$	$0.00 \mathrm{E}+0$	ND	ND	ND	ND	ND
Exported electrical energy	$[\mathrm{MJ}]$	$0.00 \mathrm{E}+0$	$2.35 \mathrm{E}-1$	ND	ND	ND	ND
Exported thermal energy	$[\mathrm{MJ}]$	$0.00 \mathrm{E}+0$	$4.19 \mathrm{E}-1$	ND	ND	ND	ND

RESULTS OF THE LCA - addifional impact categories according to EN 15804+A2-optional:
1 kg air entrainer

Indicator	Unit	A1-A3	A5	C1	C2	C4	D
Potential incidence of disease due to PM emissions	[Disease Incidence]	ND	ND	ND	ND	ND	ND
Potential Human exposure efficiency relative to U235	$\begin{gathered} {[\mathrm{kBq} \mathrm{U235-}} \\ \mathrm{Eq.]} \\ \hline \end{gathered}$	ND	ND	ND	ND	ND	ND
Potential comparative toxic unit for ecosystems	[CTUe]	ND	ND	ND	ND	ND	ND
Potential comparative toxic unit for humans - cancerogenic	[CTUh]	ND	ND	ND	ND	ND	ND
Potential comparative toxic unit for humans - not cancerogenic	[CTUh]	ND	ND	ND	ND	ND	ND
Potential soil quality index	[-]	ND	ND	ND	ND	ND	ND

Potential Human exposure efficiency relative to U235, Disclaimer 1 - This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and (from) some construction materials is also not measured by this indicator.

ADP minerals \& metals, ADP fossil, WDP, ETF-fw, HTP-c, HTP-nc, SQP, Disclaimer 2 - The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

Additional environmental impact indicators (suggested by EN15804, table 4) are not declared in the EPD. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high and as there is limited experience with the indicator (see ILCD classification in EN 15804, table 5). For this reason, results based on these indicators are not considered suitable for a decision-making process and are thus not declared in the EPD.

6. LCA: Interpretation

When considering upstream production and transport of pre-products as well as manufacturing of the concrete admixture (modules A1-A3), the main driver of impacts in almost all categories is the production of pre-products (module A1), generally more than 55%.

For global warming potential (GWP) more than half of the impacts are from pre-products production processes like tensides and related chemical precursors. The manufacturing process is the second contributor (less than half of the total GWP). Important contributors to this indicator during the manufacturing process are electricity production consumed during the admixture production process (module A3) and plastic production consumed for the packaging of the final product. European electricity grid mix is an important contributor to eutrophication marine (9%). The European electricity grid mix also has an influence on acidification (7%) and eutrophication terrestrial (6 \%). Renewable primary energy demand (PERT) is influenced by electricity production (about 31%) and for the rest by pre-products production. Non-renewable primary energy demand (PENRT) is influenced almost only by pre-products production (about 75%) and electricity for 9%. Treatment of production waste has negligible contribution to impacts in all categories except eutrophication freshwater (8 \%), where landfilling of production waste has an influence. Packaging production has an influence mainly (only) for photochemical ozone production (13 \%).

The other life cycle phases have minor influence, generally lower than 8% except for the end-of-life phase where photochemical ozone formation is influenced for 11%, eutrophication marine 15% and eutrophication terrestrial 10%. Acidification is influenced the end-of-life phase for 7%.

A5 module is mainly dominated by the incineration process of packaging wastes, in particular the incineration of plastic (HDPE) is the main contributor for all indicators followed by incineration of wood packaging. This module accounts also for the calorific value of the packaging considered as (an) output and therefore with a negative value. This influence PENRM, non-renewable energy content by plastic packaging and PERM, renewable energy content by wood packaging.

Considering the entire end of life modules, landfill for construction wastes is the main contributor for all the impact considered, followed by the truck used for transporting the waste from the building site to the landfill.
C1 module: the combustion of fuel occurring during demolition processes is the main contributor for this module and (for) all the impacts considered.
C2 module: trucks used for waste transport and related combustion emissions are the main contributor for all impacts considered.
C4 module: landfill process and in particular energy consumed for landfill management and operation is the main contributor for all the impacts considered.

D module is influenced by the potential credits generated during installation module (A5), thanks to the energy produced by the incineration processes used for packaging disposal and secondly by the incineration of the admixture residue when this material can be incinerated (thanks to its calorific value). If the admixture has a calorific value, it can be sent to incineration because, during this phase, the residual admixture is not melted with concrete.

As this involves a declaration of preliminary products, special tests and evidence within the framework of drawing up this Model Environmental Product Declaration have not been carried out or provided.

8. References

Candidate list

Candidate list List of those eligible for approval substances of very high concern to the European Chemicals Agency, as of July 2021.

CLP

Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures, as of Febrary 03-2021

CPR

Construction Production Regulation (EU) No 305/2011 of the European Parliament and of the council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

EN ISO 9001:2015

EN ISO 9001:2015, Quality management systems Requirements (ISO 9001:2015)

EN 196-2:2013
EN 196-2:2013, Test methods for cement - Part 2: Chemical analysis of cement

EN 206:2013+A1:2016

EN 206:2013+A1:2016, Concrete - Part 1:
Specification, performance, production and conformity

EN 480-1:2014

EN 480-1:2014, Admixtures for concrete, mortar and grout - Test methods - Part 1: Reference concrete and reference mortar for testing

EN 480-2:2006

EN 480-2:2006, Admixtures for concrete, mortar and grout - Test methods - Part 2: Determination of setting time

EN 480-4:2005
EN 480-4:2005, Admixtures for concrete, mortar and grout - Test methods - Part 4: Determination of bleeding of concrete

EN 480-5:2005

EN 480-5:2005, Admixtures for concrete, mortar and grout - Test methods - Part 5: Determination of capillary absorption

EN 480-6:2005
EN 480-6:2005, Admixtures for concrete, mortar and grout - Test methods - Part 6: Infra red analysis

EN 480-8:2012

EN 480-8:2012, Admixtures for concrete, mortar and grout - Test methods - Part 8: Determination of the conventional dry material content

EN 480-10:2009

EN 480-10:2009, Admixtures for concrete, mortar and grout - Test methods - Part 10: Determination of water-soluble chloride content

EN 480-11:2005

EN 480-11:2005, Admixtures for concrete, mortar and grout - Test methods - Part 11: Determination of air void characteristics in hardened concrete

EN 480-12:2005

EN 480-12:2005, Admixtures for concrete, mortar and grout - Test methods - Part 12: Determination of the alkali content of admixtures

EN 480-14:2006

EN 480-14:2006, Admixtures for concrete, mortar and grout - Test methods - Part 14: Determination of the effect on corrosion susceptibility of reinforcing steel by potentiostatic electro-chemical test

EN 934-1:2008

EN 934-1:2008, Admixtures for concrete, mortar and grout - Part 1: Common requirements

EN 934-2:2009+A1:2012

EN 934-2:2009+A1:2012, Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures Definitions, requirements, conformity, marking and labelling

EN 934-5:2007

EN 934-5:2007, Admixtures for concrete, mortar and grout - Part 5: Admixtures for sprayed concrete Definitions, requirements, conformity, marking and labelling

EN 934-6:2019

EN 934-6:2019, Admixtures for concrete, mortar and grout - Part 6: Sampling, assessment and verification of the constancy of performance

EN 12350-2:2019
EN 12350-2:2019, Testing fresh concrete - Part 2:
Slump test

EN 12350-5:2019
EN 12350-5:2019, Testing fresh concrete - Part 5:
Flow table test
EN 12350-7:2019
EN 12350-7:2019, Testing fresh concrete - Part 7: Air content - Pressure methods

EN 12390-3:2019

EN 12390-3:2019, Testing hardened concrete - Part 3:
Compressive strength of test specimens
EN 14487-1:2005
EN 14487-1:2005, Sprayed concrete - Part 1:
Definitions, specifications and conformity
EN 15804: 2012+A2:2019
EN 15804: 2012+A2:2019, Sustainability of construction works -Environmental Product

Declarations - Core rules for the product category of construction products

EU Biocidal Products Regulation (No. 528/2012)
The EU Biocidal Products Regulation (No. 528/2012)
Guidance document for ASD industries (January 2016)

EWC/AVV waste code

Directive governing introduction of the European Waste Catalogue
http://www.ngs-mbh.de/zs/eak.html

GaBi 10 software \& documentation

Data base for Life Cycle Engineering LBP, University of Stuttgart and Sphera, documentation of GaBi 10 data sets http://documentation.gabi-software.com/, 2020

IBU 2021

Institut Bauen und Umwelt e.V.: General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. EPD programme. Version 2.0. Berlin: Institut Bauen und Umwelt e.V., 2021
www.ibu-epd.com

ISO 758:1976

ISO 758:1976, Liquid chemical products for industrial purposes; Determination of density at $20^{\circ} \mathrm{C}$

ISO 4316:1977
ISO 4316:1977, Surface active agents; Determination of the pH value of aqueous solutions; Potentiometric method

PCR Part A

Product Category Rules for Building-Related Products and Services, Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project report, Version 1.1, Institut Bauen und Umwelt e.V., 2021-01

PCR Part B

Product Category Rules for Construction Products, Part B: Requirements on the EPD for concrete admixtures, 2017-11

REACH Regulation

Regulation (EU) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

