Technical product data

<table>
<thead>
<tr>
<th>Description</th>
<th>SikaForce®-7550 L05</th>
<th>SikaForce®-7550 L15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic, very fast-curing and non-sagging assembly adhesive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pot life</td>
<td>5 min. approx.</td>
<td>15 min. approx.</td>
</tr>
<tr>
<td>Mixing ratio (A : B)</td>
<td>2 : 1</td>
<td>2 : 1</td>
</tr>
<tr>
<td>Parts per volume</td>
<td>108 : 50</td>
<td>108 : 50</td>
</tr>
<tr>
<td>Parts per weight</td>
<td>108 : 42</td>
<td>108 : 42</td>
</tr>
<tr>
<td>Viscosity (25 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. A</td>
<td>20 000 mPas approx.</td>
<td>20 000 mPas approx.</td>
</tr>
<tr>
<td>Comp. B</td>
<td>20 000 mPas approx.</td>
<td>20 000 mPas approx.</td>
</tr>
<tr>
<td>Mixing viscosity (A + B)</td>
<td>170 000 mPas approx.</td>
<td>170 000 mPas approx.</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>400 % approx.</td>
<td>250 % approx.</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>5 MPa approx.</td>
<td>5 MPa approx.</td>
</tr>
<tr>
<td>E-Modulus</td>
<td>10 MPa approx.</td>
<td>10 MPa approx.</td>
</tr>
<tr>
<td>Lap shear strength</td>
<td>5 MPa approx.</td>
<td>5 MPa approx.</td>
</tr>
<tr>
<td>Shore A hardness</td>
<td>30 approx.</td>
<td>25 approx.</td>
</tr>
<tr>
<td>Glass transition temperature</td>
<td>-50 °C approx.</td>
<td>-50 °C approx.</td>
</tr>
<tr>
<td>Strength development</td>
<td>0.8 MPa after 1hr. approx.</td>
<td>0.2 MPa after 1hr. approx.</td>
</tr>
<tr>
<td>Service Temperatures</td>
<td>-40 °C to +90 °C</td>
<td>-40 °C to +90 °C</td>
</tr>
</tbody>
</table>

Our most current General Sales conditions shall apply. Please refer to the relevant Technical Data Sheet(s) prior to any use and processing.
Do you need to speed up your production process? And benefit from an extraordinary adhesive performance in terms of elasticity and strength?

SikaForce®-7550

In modern adhesive bonding technology for commercial vehicles, there are nowadays requirements which seem not to be easily achievable in using one and the same system:

- high final strength and modulus for structural bonding
- excellent elasticity capable of withstanding high dynamic stresses

With SikaForce®-7550, a classic 2-component polyurethane system, Sika connects for the first time the well-known advantages of Sikaflex® (1-C) and Sikaforce® (2-C) technology. This results in the combination of high elasticity with structural bonding properties – as described in the previous systems.

SikaForce®-7550 is well pumpable, due to both components are relatively low in viscosity. The thixotropic and non-sag behaviour of the adhesive is built up by itself during the mixing process. After application of SikaForce®-7550 an adequate working time of up to 15 minutes remains for assembling the components. Then the quick curing, which can be accelerated by temperature, occurs. The final result is a structurally laid out bonding with excellent elastic behaviour and lower than 1-C Sikaflex® systems. The rapid strength development and fast curing reduces significantly the time after the bonding operation until the vehicle can be reused again. This results in an overall shorter manufacturing process, with the corresponding cost savings.

Sika application (manual / automatic)

SikaForce®-7550 is available in cartridges and drums. To process SikaForce®-7550 different suitable 2-C pump systems and adequate robot devices are available for optimal application solutions. For advice on selecting and setting up a pump system, as well as on the techniques of pump operated application, please contact the System Engineering Department of Sika Industry.

From manual to automatic

The 2-component polyurethane adhesive can be processed either manually or automatically.

Cartridge application (manual)

For manual application double cartridges serve the purpose. The two components are processed using a suitable pneumatic cartridge gun and a static mixer.

Double cartridges also offer universal application opportunities almost independent of the location.

Pump application (manual or automatic)

SikaForce®-7550 is also available in hoses and drums. To process SikaForce®-7550 different suitable pump systems and adequate robot devices are available for optimal application solutions. For advice on selecting and setting up a pump system, as well as on the techniques of pump operated application, please contact the System Engineering Department of Sika Industry.

SikaForce®-7550 Application and Processing

SikaForce®-7550 is suitable for structural joints that will be subjected to high dynamic stresses, where rapid strength development and fast curing are essential requirements. SikaForce®-7550 is a deep adhesive and can be used as a bonding agent in joining structural aluminium and steel sheets, metal primers and paint coatings (2-component systems), wood and ceramic materials.

SikaForce®-7550 curves by chemical reaction of the two components to form a durable adhesive. An unique combination of elasticity, high final strength, adequate working time and rapid strength development offers the following advantages in terms of:

- high final strength and modulus for structural bonding
- excellent elasticity capable of withstanding high dynamic stresses
- compensation of different thermal expansion rates
- no damage to substrate or structure due to drilling and welding
- prevents galvanic metal and crevice corrosion
- high shear and tensile strength (structural bonding)
- high impact and tear propagation resistance
- increased all over vehicle stiffness
- improved all over vehicle comfort
- cost savings
- maximum freedom of design

Production engineering

- rapid gap filling capability
- picking of anchor or preplate substrates
- adherence to manufactured tolerances
- adhesion to manufactured tolerances
- no thermal distortion or shrinkage
- no mark through
- suitable for manual and / or automated application

Quality

- uniform stress distribution
- capable of withstanding high dynamic stresses
- no damage to substrate or structure due to drilling and welding
- prevents galvanic metal and crevice corrosion
- high shear and tensile strength (structural bonding)
- high impact and tear propagation resistance
- increased all over vehicle stiffness
- improved all over vehicle comfort
- cost savings
- maximum freedom of design